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Abstract

The understanding of the interior of the planet through
the seismic method requires the mapping of the velocities
with which the elastic waves propagate. The main
objective of this work is the development of improved
techniques to obtain interval velocities in time, by inversion
of RMS velocities. In this article, the data inversion
is performed with a combination of local and global
optimization methods. In order to reduce the problems
related to the large number of inversion parameters, a
multiscale approach will be presented in the parameter
domain. The proposed method is tested in subdetermined
problems and with addition of noise. The results shown
in the M3 model simulate how this methodology it can be
applied applied to real data, which raises the relevance of
this research.

Introduction

The seismic reflection method uses the propagation of the
seismic wave in subsurface with the objective of delineating
geological structures. It is the most common method
used in the oil industry by being able to record reflections
associated with reflectors located a lot miles deep. Much
of what is known about the interior of the planet through
seismic requires knowledge of the velocities with which
elastic waves propagate in subsurface. This fact makes the
study of the field of velocities one of the main objectives of
this geophysical method, and for this reason the search for
this one has been the object of study in many researches
to the logo of the years. Many of the proposals used to
solve this problem have limitations, such as: Need for a
good initial field, overdetermined problem, noise free data
and parallel plane models (Santana and Bassrei (2015);
Rocha Junior and Porsani (2013); Stewart (1984); Schultz
(1982)). The main objective of this paper is to present
alternatives to obtain velocities in order to overcome the
limitations described.

Even today, the velocity spectrum analysis is the most
used methodology in the search of this field, but it is a
big difference between the velocities obtained with such a
procedure and the velocity with which a wave pulse travels
in a range of rock (interval velocities V ). Based on some
considerations, velocity obtained with spectrum analysis
approaches RMS velocity (Root Mean Square) VRMS.

When you know VRMS, it can be, treating itself as data of an
inverse problem, to obtain V as parameters of the model.
The solution of this inverse problem is conventionally
obtained by the Dix formula (Dix, 1955). However the
use of this type of solution is restricted to a model in
which the subsurface is formed by homogeneous layers
without diving, and that the data is free of noise. When
these premises are invalid, the obtained model distances
itself from the true one often with abrupt and anomalous
variations in relation to the real field. In this work, methods
are combined in multiscale approach and using a priori
information, in order to offer an alternative approach to
solve the problem when the data is contaminated with
noise or even when it is sub-determined problem.

The inversion methods are divided into two groups, the
first one dealing with the search for local solutions and
the others seeking solutions in the global set of models.
Both as methodologies of classification advantages and
disadvantages, and a combination of the two types that
allow one to have an algorithm of excellence. Chunduru
et al. (1997) showed that hybrid algorithms are more
efficient than global methods. In this work the inversion
is performed by combining of the global method very fast
simulated annealing (VFSA) with the local Gaus Newton
(GN), in multiscale hybrid approach, and with the use of
the reflectivity as a priori information.

Seismic Velocity

In the seismic method, there are several velocity definition,
which depends on the processing step and the technique
for obtaining it: velocity - interval, apparent, average, root
mean square (RMS), instantaneous, phase, group, normal
moveout (NMO), stacking, etc (Yilmaz, 1987).

Velocities: NMO, RMS e Intervalar

In CMP processing (Common Mid Point), meets in the
same panel (Fig. 1b), all traces they have in common the
midpoint between source and receiver (Fig. 1a). Starting

(a) Seismic reflection CMP . (b) CMP family.

Figure 1: CMP processing (Silva, 2004).

from the simplified Fig. (2), you can use the Eq. (1)
to calculate the propagation time between source and
receiver. Where X represents the offset, V velocity and
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h the depth of the layer.

t2(X) = (2h/V )2 +
(X

V

)2
(1)

For a null offset, namely X = 0, t(0) = (2h/V ) = t0 where t0
represents the double time in zero offset. The difference
between t0 and the time for another offset (∆tNMO), is
calculated by Eq. (2), and is called normal move-out (NMO)
for flat reflectors and dip move-out for inclined reflectors
(Yilmaz, 1987). ∆tNMO, it make, that the reflections due
to the same midpoint in a CMP panel, form a curve
hyperbolic, where a curvature is a function of the velocity
of the layer (Fig2a).

∆tNMO = t(X)− t0 = t0
{[

1+
( X

VNMO t0

)2]1/2
−1
}

(2)

NMO correction is the name of the process that removes
∆tNMO Of the traces, and causes the reflection hyperboles
to horizontalize (Fig. 2b). The NMO correction is performed
by estimating the NMO velocity (VNMO). The equation

(a) CMP’s with different
velocities V .

(b) Aplly NMO corection.

Figure 2: Paineis CMP’s (Yilmaz, 1987; de Souza, 2014).

(2) compute ∆tNMO for the propagation of the wave in a
single layer (Fig. 2), in cases where the wave moves
through several layers with different velocities (Fig. 3), such
equation becomes (3) (de Souza, 2014).

Figure 3: Multi-layer CMP (de Souza, 2014).

∆tn,NMO = tx,n− t0,n =
[
t2
0,n +

( X
VNMO

)2]1/2
− t0,n (3)

where t0,n is double time in zero-offset from the reflection
in the nth layer. Taner and Koehler (1969) showed that for
small offset VNMO can be approximated by the VRMS, and
this can be calculated by Eq. (4).

VRMS =

√
1

t0,n

n

∑
i=n

V 2
i ti (4)

where Vi interval velocity of each layer and ti is double time
for the wave to travel the distance between the top and
bottom of it.

Direct Modeling and the Inverse Problem

The problems involved in geophysics are classified into two
categories, the first being referred to as a direct problem,
where the physical parameters of a model are known
(m) (density, resistivity, velocity and etc.) with the use
of a theory (F ) simulates the response of a supposed
geophysical survey (dcal). The second class is the inverse
problem, where data obtained by direct measures are
known (dobs), and it is attempt, by means of a theoretical
relation, to reconstruct the parameters of a model (m) for
the sub-surface (Sen and Stoffa, 1995). The equation (5)
shows a relation between d and m, and a figure 4 shows
their role in the direct and inverse problems.

Model   m

Direct modeling

 Direct problem

Data    d

Figure 4: Relation of d and m to direct and inverse
geophysical problems (Rodrigues and Bassrei, 2015).

d = F (m) or d = Gm if m and d is LD (5)

where G is a linear operation in m to obtain d. When m and
d are LD (linearly dependent), the problem is said to be
linear. Solving the inverse problem means finding m when
known d. In this work, we try to find the interval velocities
(V ) as a solution of a nonlinear inverse problem, which has
as input data the velocities RMS (VRMS).

Inversion methods

The solution of the inverse problem is based on the
minimization (or maximization) of an objective function
Q(m), where such a function usually measures the energy
of the errors between observed data (dobs) and calculated
(dcal) as shows Eq. (6) (Wright and Nocedal, 1999).

Q(m) = eT e where e = dobs – dcal (6)

In the case of linear problems Q (m) represents a parabolic
surface, the minimum of which is located in its vertex, can
be found by the Gradient Conjugate (CG). The CG part
of the initial model mo, and seeks a solution mmin that
minimizes Q(m), in a subspace containing the gradient of
the current iteration and the previous iterations (Hestenes
and Stiefel, 1952; VanDecar and Snieder, 1994). In the
problems where m and d are LI (linearly independent), Q
(m) represents a rough surface with various minimum (Fig.
5), and for this type of problem the inversion methods are
divided into local and global, and each has advantages
and disadvantages. The local methods are sensitive to the
initial model mo and converge to the nearest minimum of
this. Unlike local, global methods allow the global minimum
to be found independent of the initial model.

Gaus Newton Method - GN

For a strictly nonlinear problem ( Fig. 5), the Gaus Newton
(GN) method creates a quadratic approximation of Q(m)
which defines a paraboloid Q̃(mk) so that it is tangent to
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Figure 5: Q(m) nonlinear problem (Sen and Stoffa, 1995)

Q(m) at the current point. In this way the current model is
updated by Eq. (7):

m∗ = mk+∆mk (7)

where ∆mk is the perturbation performed in the model
parameters, and this is found as a solution of the linear
equation (Eq. 8), which can be solved by GC for example.

GT
k

Gk ∆mk = GT
k

ek (8)

where ek is a linear approximation of the noise and Gk is
the matrix of the derivatives of equation (5) in relation to
the parameters of the model, known as sensitivity matrix.
m* is updated until it represents a local minimum, and for
this to be the global of the problem, mo must be close to
mmin, and this characterizes GN as local search method.

Very Fast Simulated Annealing - VFSA

The VFSA method is an alternative to find the global
minimum of the objective function, and is described as
a variant of Simulated Annealing (SA) (Sen and Stoffa,
1995), which allows narrowing the search interval in the
iteration, which results in faster convergence. From an
initial model mk, the updating of the same occurs through
Eq. (9), where each parameter mi

k is disturbed by a factor
yi, generated randomly by equation (11) (Sen and Stoffa,
1995).

mk+1
i = mk

i + yi
(
m

max

i −m
min

i
)
, (9)

The parameter yi is generated from the following
distribution

gT (y) =
NM

∏
i=1

1

2
(
|yi|+Ti

)
ln
(

1+ 1
Ti

) =
NM

∏
i=1

gTi
(yi), (10)

Thus a random number ui drawn from a uniform distribution
u[0,1] can be mapped into the above distribution with the
formula

yi = sgn(ui−
1
2
)Ti

[(
1+

1
Ti

)|2ui−1|

−1

]
. (11)

with m
max

i and m
min

i Represents the bounds of the model,
and ui generated randomly. Ingber (1989) showed that the
overall minimum is obtained statistically using the cooling
criterion shown in Eq. (12), Where the temperature Ti is
reduced at each iteration.

Ti(k) = T0ie−Cik1/NM
, (12)

The model generated by Eq. (9) will be taken as the current
model based on the criterion of metropolis (Metropolis
et al., 1953). The statistical character of generation and
acceptance allows the algorithm to escape from local
minimum.

Hybrid optimization methods

Local and global optimization algorithms are used
commonly in geophysical data inversion. Each type
of algorithm has unique advantages and disadvantages
(Chunduru et al., 1997). In this work the idea is to
use a combination of the two types, in order to extract
The advantages of each of them, and discard their
disadvantages. Chunduru et al. (1997) showed that
hybrid algorithms to be computationally more efficient than
conventional methods of global optimization. In particular,
we combine the local GN method with a global VFSA
approach to solve problems of geophysical interest. The
method structure is GN at the end of the VFSA, Where the
VFSA gets the starting model for GN.

Hybrid search algorithms have the potential to make
use of the important features of both global and local
algorithms they do not require a good starting solution, they
are computationally less expensive compared to global
algorithms, and they obtain good models with poor starting
solutions (Chunduru et al., 1997).

Multiscale approach

It is known that the higher the number of inversion
parameters, the greater the difficulty of convergence.
This work applies a multiscale approach, which consists
in solving the problem at different scales, where it is
changed at each step, and the input model is given as
the one obtained in the previous step, until the problem
is completely solved. Different multiscale approaches are
applied in different domains (Zun-Ze et al., 1998; Shi et al.,
2000), in this work, multiscale is used in the parameter
domain, which allows a significant reduction in the number
of inversion parameters, and this quantity is increased at
each iteration.
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Figure 6: Multiscale scheme in the domain of parameters
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The approach is based on two steps, where in the first is
created a windowing in the parameters of the model, so
that the velocities are separated in blocks, and within this
the set of velocities are described by a single parameter,
hence the problem is solved by using the VFSA method
(Fig. 6). The model obtained in the initial step is given as
input model to be optimized in the following steps by the GN
method. At each step of GN the solution is being improved
by gradually increasing the inversion parameters, until the
moment the problem is completely solved (Fig. 6).

Results

The determination of interval velocities can be expressed
as an inverse problem using Eq. (5), where using (4) we
have that:

m = [V1 . . .Vn ]
T d = [VRMS,1 . . .VRMS,n]

T (13)

RMS Velocity profiles are used in time as input data (d),
and through the proposed methodology, interval velocity
profiles V are also obtained in time as parameters of the
model (m)). In order to satisfy Eq. (13), both profiles are
discretized in vectors according to figure (7).
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Figure 7: Relationship between interval and RMS velocity
in the inversion problem

The velocity search methodology is applied in both one-
dimensional (1d) and two-dimensional (2D) models .

Model M1 - 1D

In 1D models (VRMS) are modeled directly by equation
(4), and the problem is undetermined type, where the
parameter number (M = 300) of the model is greater than
the number of data of the problem (N = 100). The inversion
was performed with the hybrid method in multiscale having
as the initial model profiles with constant velocities V0 =
4200ft/s. For each 1D model, the result of the inversion
obtained with the first step (VFSA) and the resulting
improvement in the other steps (Hybrido GN), besides
the real (initial) and initial (initial) models, are shown in
a single figure for possible comparisons.

The Model M1 is based on the idea that within a same layer
the velocity is constant. The results are shown in figure 8.

It is interesting that in the multiscale approach presented,
the effectiveness of the method is directly related to the size
and quantity of windows for each profile, and in model M1
the windowing was done in a random way (Fig. 8). Seeking

 1600

 2400

 3200

 4000

 4800

 5600

 6400

 0  40  80  120  160  200  240  280

In
te

rv
al

 V
el

oc
ity

 (
ft

/s
)

Interval time (s)

Inversao multiescala janelada VFSA+GN

Real
Initial
VFSA

Hybrid GN

Figure 8: Profile of interval velocities as a function of time,
model M1.

to improve the efficiency of the method was created a
criterion of windowing that is based on using the reflectivity
of the model as a priori information in the search of the
ideal window, so that the set of velocities separated by
two primary reflections were windowed (Fig. 9) The M1
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Figure 9: Application of reflectivity in the windowing of the
parameters in the multiscale approach.

model was reversed again, now using reflectivity as a priori
information (Fig. 10).
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Figure 10: Profile of interval velocities as a function of time,
model M1 with reflectivity as prior information.
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When we compare the figures 8 and 10, we can see a
real improvement resulting from the use of reflectivity with
a priori, for this reason this information has been inserted
in all other models.

Model M1 - 1D with noise

The data vector of the M1 model (VRMS) was disturbed with
random noise of±1.7% and the inversion results are shown
in figure 11.
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Figure 11: Profile of interval velocities as a function of time,
model M1 with reflectivity as prior information, noisy data.

Model M2 -1D

The model M2 describes a situation similar to M1, but in M2
the velocity inside the layers is not constant as M1, and is
subjected to a variation by use of velocity gradient, and this
differs from one layer to another. The figure 12 summarizes
the results of this model.
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Figure 12: Profile of interval velocities as a function of time,
model M2 with reflectivity as prior information.

Based on the high quality results of the 1D approach
presented in the figures ( 8) , (11) e (12), we can see
the autonomy and efficiency of the method, since in all
situations, even if it was an undertermined problem and
in the presence of noise, convergence occurs for models
that are highly representative of true ones, even though the
initial model was constant.

Model M3 - 2D

The M3 model, shown in the figure (Fig 13), simulates a
plane-paralele layer medium that has failed. In this model,
the Seymic Unix package, which is based on ray tracing,
was used to model 200 shots in an end-on arrangement
(Fig 13). Seismic modeling, carried out in M3, generated
a total of 497 CMPs ranging from 1 to 497, separated
by 25 feet. In the maximum fold CMPs, from 100 to
400, a velocity analysis was performed, which resulted in
the profiles of VRMS, in addition, spectrum picking time X
Velocity, a pseudo-reflectivity was generated to be used
with a priori in the windowing of the multiscale.

Figure 13: M4 Seismic modeling Cshot ray tracing.

The figure 14 shows the inversion of the resulting profile
of the CMP 150. In this figure it can be seen that the
use of GN, in search of resolution improvement, is strongly
influenced by data noise, and that noise comes from two
factors (i) VRMS is best represented by VNMO when the
medium is free of lateral velocity variation, which is not
obeyed by M3, (ii) The velocity analysis is a manual step
and is subject to observer errors.
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Figure 14: Profile of interval velocities as a function of time,
model M3 with reflectivity as prior information, noisy data.

The M3 inversion is complete when all the CMP’s of the
seismic data are inverted and the interpolation of the
generating a 2D model in time (Fig. 15).
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Figure 15: 2D session of inverted M3 model using
reflectivity as prior information.

Conclusion

In this paper, the problem of obtaining V, was solved
by the hybrid inversion of VRMS in multiscale approach.
The proposal presented an alternative to overcoming
some existing limitations in previous approaches that deal
with this problem, such as: need for a good initial
field, overdetermined problem, noise-free data and parallel
plane models. In all situations the convergence occurred
starting from a constant model, which showed autonomy
of the method in relation to the initial model. In the
noisy situations, the method remained stable, satisfactorily
solving the problem, but in these cases the increase in
resolution reduced the accuracy of the results. The use of
reflectivity proved to be a useful alternative to the multiscale
giving automation and steering in the windowing phase.
The high acuracy of the results, allows to conclude that the
inversion hybrid multi-scalar approach was efficient in the
solution of the proposed problem.

In furturos works it is intended to use the seismic modeling
with complete equation of the wave by finite differences. It
is also intended to combine other methods (global + local),
in addition to applying such a methodology as an initial
model estimator to be used in FWI. Finally, it is intended
to apply this methodology to real data.
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